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INTRODUCTION

Bubbles are essential particles in many industrial as well

as natural processes. Heat transfer through boiling, fluid cavi-

tation, bubble driven circulation systems in metal processing,

and bubble/free surface interactions in oceans are just a few

examples of the many roles that bubbles play in the physical

systems. One of the key questions in phase change dynamics

is the prediction of mass transfer rate and its effects on the

fluid flow and heat transfer of the system. There has been

extensive investigations about bubble growth rate in the last

few decades. The early work was concerned about solving

separately the momentum and heat conduction equation and

can be divided into two main categories: growth rate con-

trolled by inertia and growth rate controlled by heat diffusion.

In the inertially-controlled growth the temperature difference

between bubble and liquid is negligible and the growth is con-

trolled by the pressure difference inside and outside the bubble

and inertia of the liquid. Rayleigh (1917) made such assump-

tion to solve for the collapse of an empty cavity in a large mass

of liquid. Rayleigh's solution was confined to spherically

symmetric, isothermal, and inviscid flow. He also neglected

the surface tension. Later on, his analysis was extended to

include liquid viscosity and surface tension. In the heat dif-

fusion controlled growth the pressure difference inside and

outside bubble is negligible and the growth is controlled by

heat transfer from the liquid to the bubble. The investigations

of Bosnjakovic (] 930), Plesset & Zwick (] 952), and Skinner

& Bankoff (1965) are a few examples of analysesbased on the

heat diffusion controlled growth. Subsequent analyses to solve

the coupled equations have produced several asymptotic solu-

tions applicable to long time only and a number of complete

but approximate solutions involving simplifying assumptions

about the heat conduction equation. See, for example, Plesset

& Zwick (1954), Scriven (1959), and Bankoff (1958) for the

former and Kosky (1968), Mikic et al. (1970), and Theofanous

& Patel (1975) for the latter,

The use of numerical modeling in solving fluid flow with

phase change is relatively new. One of the earliest of such

studies is the potential flow solution of Plesset & Chapman

(1971) for the collapse of an isothermal spherical vapor bub-

ble in the neighborhood of a solid wall. A number of authors

have tried to solve the boiling bubble problem by coupling

the momentum equation with a simplified form of the energy

equation. See Theofanous et al. (1969) and Prosperetti &

Plesset (1977), for example. Dalle Donne & Ferranti (1975)

were among the first to solve the complete equations of motion

and energy. More recent numerical studies about boiling bub-

bles include boundary fitted/finite element method of Schunk

& Rao (1994), finite volume/moving mesh method of Welch

(I 995), level set method of Son & Dhir (1997), and front track-

ing/finite difference technique of Juric & Tryggvason (1995).

So far, the last two studies present the most comprehensive

numerical modeling of the phase change problem leaving aside

their two-dimensionality. While it is possible to predict some

of the qualitative features of the phase change phenomena

by two-dimensional simulations, it is generally believed that

these computations fail to provide an accurate account of the

quantitative features. Therefore, it is necessary to relax this

restriction in order to obtain a more realistic picture of the

problem. Our aim is to present a numerical technique for

modeling three-dimensional fluid flow with phase change. To

the best of our knowledge, this is the first numerical study

that addresses this issue. In an earlier study (i.e. Esmaeeli

& Arpacl, 1998), we used a similar methodology to simulate

phase change without fluid flow.

FORMULATION AND NUMERICAL METHOD

Consider a domain consisting of a liquid and its vapor un-

dergoing phase change. The material properties of the fluids

are different but constant within each phase. The governing

equations for this problem are conservation of mass, momen-

tum, and energy equations within each phase, and the jump

conditions across the interface. Rather than writing the gov-

erning equations separately for each of the fluids, a single set

of equations are used which are valid for the entire flow field

and take the jump in properties across the interface into ac-

count. The momentum equation in conservative form for such

a flow is:

c9p77
O---_'-+ U P__ = --U'p + V •/_(U'_- + _T/-T)

-p_ + q_ cr_'tS(_- -- T ¢ ),_A.
3

(1)

In the above equation _ is the velocity, p is the pressure, p

is the density, /_ is the viscosity, _ is the gravity, ¢r is the

surface tension coefficient, h"is twice the mean curvature, and

_ is the unit vector normal to the interface. (_(_- - T r ) is a

delta function which is zero everywhere except at the interface

where _ = yr and dA is differential area of the interface.
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The energy equation in conservative form is:

cOvc-.-f-T+ V. pc_ = V. kVT + (2)
cot

/ -_pj (-_, - -_1)._,s(-z -
yJ >dA,

where T is the temperature, c is the heat capacity, and k is the

heat conductivity. The last term in the above equation acts as

a heat source (sink) which is zero away from the interface and

its inclusion enforces the conventional energy jump condition

across the front. Here, PS and _S are the fluid density and

velocity at the liquid or vapor side of the interface, and -if,

is the interface velocity, h is a measure of difference in the

enthalpies of the liquid and the vapor and is derived using

thermodynamics consideration:

= hi_ + T_q(cz - c<). (3)

Here, h js is the latent heat of evaporation, T_q is the equilib-

rium temperature, and cz and c,. are the heat capacities of the

liquid and the vapor, respectively.

The mass conservation is:

U'. p_ =/(p_, - pt)u,,(_(_" -Yf )d.l, (4)

where, u, -----u,.n. The above equation is equivalent to the

conventional mass conservation equation but is better suited

for numerical formulation.

The introduction of the interface velocity _, adds an ad-

ditional unknown to the problem. This new unknown is be-

ing taken care of by implementation of the modified Gibbs-

Thomson relation at the interface:

TJ = T_ t + o'h'Teq "4- (el - c,,_.._..._}" pjhj---_ lu,_ ITs - T_q)2- (5)

where 0 is the kinetic mobility. The above equation was first

derived by Alexiades & Solomon (1993) and then modified

by Juric & Tryggvason (t996) to include the kinetic mobility

effect.

The above equations are supplemented by the equations

of state for the material properties:

Pp "Dp = O; Dk T)c
Pt --0; 9-7 _ =0; _7=0' (6)

where

p---/= 0-7+ _' v. (7)

Our numerical technique is an extension to the two-dimensi-

onal model developed by Juric & Tryggvason (1995). Exten-

sion of the method to three dimensions involves a number of

complications in the operations on the front which will be ad-

dressed in a future publication. We use a fixed (i.e. Eu]erian),

regular, and staggered grid to discretize the governing equa-

tion and an unstructured (i.e. Lagrangian) grid to represent the

front and to construct the material property fields. This un-

structured grid is also used to distribute the source terms in the

right hand side of mass conservation, momentum, and energy

equations to the Eulerian grid and to interpolate the velocity,

temperature, and density at the front points from the grid.

The computations start with construction of the initial tem-

perature field T" and the material property fields p', It", c', k"

using known position of the front at I = 0, where _ = 1. The

front is then moved to a new position using the interface veloc-

ity at the current time _,'. The surface tension is distributed

to the grid as a body force using Peskin distribution function

(see Peskin 1977) and the density p" + t and heat capacity c." +

fields are constructed at the new position. A modified projec-

tion algorithm which is first order in time and second order in

spatial dimensions is used to solve the momentum equation.

In the absence of pressure term, the momentum equation is

solved and a provisional (i.e. unprojected) velocity field _ is

computed. The iterative part starts by guessing the front ve-

locity at the next time step and construction of the mass source

at the new position of the front. An elliptic pressure equa-

tion is then solved and the provisional velocity is corrected

for the pressure to obtain the projected velocity _'÷_. The

velocity of the fluid at the front position _j" +_ is interpolated

using a Peskin interpolation function (see Peskin 1977) and

the heat source is constructed. The energy equation is then

solved for T "+_ and the Gibbs-Thomson relation is checked

at the front points. If this equation is satisfied for all the front

points within a predetermined tolerance, the heat conduction

coefficient k "+_ and viscosity fields IF '+_ are updated for the

next time step and the calculation proceeds. Otherwise, a new

guess is proposed for the front velocity and the computations

are repeated.

The individual parameters that control the problem are

Pt, lgt,, lit, lit,, [Q, [_:,,, ct, cv, bye, y, (_, ,9", T_ - Teq, and

initial diameter of the bubble, do. Here, T_ is the initial

temperature of the fluid outside the bubble. Nondimensional-

ization results the following parameters: p,/pt, It,./pl, k,,/kl,

c,/ct, Ja -- ct(T_- T_q)/h.Iy, Pr = l_tC'_/k_, Gr =

ptg(pt - p_,Jdo'_/lll 2, Ca = cl(Tx -- T,:q)cr/plh j_2do, and

0 -- kl/Opthj._do. Ja is the Jacob number which is ratio

of the sensible to the latent heat, Pr is the Prandtl number

which is a measure of diffusion of momentum with respect to

thermal energy, G)" has a strong resemblance to the Grashof

number, Ca is a capinaxy number which is ratio of surface

tension to viscous force, and )9 is nondimensional kinetic mo-

bility. When we present our results, 1_ = do, u _ = p t/ptdo,

and t, = l,/u_ are used as length, velocity, and time scales.
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RESULTS

Here, we present some preliminary results using our nu-

merical technique. We are interested in growth of a bubble in

a superheated liquid. The growth of a vapor bubble in a su-

perheated liquid is controlled by three factors: liquid inertia,

surface tension, and heat diffusion. These factors determine

what is called "the critical radius" which is the minimum ra-

dius that a nucleus should start with in order to grow. In the

current study, we choose the initial bubble radius considerably

larger than the critical radius. Therefore, we expect the bubble

to grow.

We start out analysis by considering the behavior of a sin-

gle bubble in zero gravity. The first frame of figure (1) shows

the initial position of the bubble in a domain. The domain

size (nondimensionalized by dividing by bubble diameter) is

2.5 × 2.5 x 5 and the grid resolution is 48 × 48 x 96. The

initial front consists of 5832 triangular elements. Initially the

liquid is superheated, the vapor is at the equilibrium tempera-

ture, and the flow is quiescent. The nondimensionai variables

are .la = O.l, Pr = 0.25, C'a = 0.02, and _ = 0.01. The

ratio of material properties are p_./pz = 0.l, P_/tq = 0.05,

k,,/kt -- 0.025, and c,_/cz = 1.0. The domain is periodic in

the horizontal direction, wall-bounded (and insulated) at the

bottom, and open at the top. At the top boundary, the pressure

and normal gradient of velocity and temperature are set to zero.

The second frame shows the bubble and a normal section of

velocity field at the middle of the domain at time t = 0.053.

The bubble elongates in the vertical direction. Since the grav-

ity is zero, there is no vortical structure inside the bubble. The

velocity field in the vicinity ofthe bubble is relatively disturbed

but it is uniform in the rest of the domain. The liquid exits from

the top boundary due to fluid expansion at the interface. The

fluid velocity is higher around the top of the bubble compared

to its side. This is due to the constrain imposed on the flow

by periodicity in the horizontal direction and the existence of

the wall at the bottom. This results in a higher evaporation

rate around the top portion of the bubble and consequently the

bubble deforms to an egg-like shape (third frame, t = 0.106).

The ratio of final volume of the bubble to its initial volume is

about fifteen. At the end of the simulation, the bubble consists

of 45704 triangular elements.

In the next simulation we study growth of a bubble un-

der high gravity. The initial setup is the same as the previous

simulation. The nondimensional numbers for this run are

.]a = 0.l, Pr = 0.25, Gr = 0.32 × 10 a, Ca = 0.004,

and 0 = 0.05. With the exception of density ratio which is

increased to p,,/p_ = 0.5, all the other material property ratios

are the same as the corresponding ones in the first simulation.

The grid resolution is the same as the previous run. Lower

density difference results in a smaller front velocity which

compensates for the higher resolution that may be needed to

accurately resolve this case. The first frame of figure 2 shows

the bubble and the velocity field at t = 0.0875. The velocity is

higher inside the bubble due to buoyancy. Two counter rotat-

ing vortices appear on the side of bubble which pump hot fluid

from the top to the rear. Since the bubble grows, we expect the

rise velocity to increase as a result of enhanced buoyancy. This

is indeed the case as is seen from the scale of the velocities in

the second frame at t = 0.22. The evaporation rate is more

uniform compared to the previous case. This is due to the fact

that the side of the bubble now has a chance to receive hot fluid

as the bubble moves upward. As a result, the elongation in the

vertical direction is much smaller compared to the first case.

Moreover, unlike the previous run, an indentation appears at

the rear of the bubble. This is a hydrodynamic effect and is

formed as a result of local competition between the surface

tension, pressure, and viscous forces. This indentation is in-

creased as the bubble rises (third frame, t = 0.268). Although

the high curvature developed at the rim of the bubble is a chal-

lenge to accurate computation of surface tension, comparison

of our results with curvatures of analytical surfaces showed

that our method successfully resolves this issue.

Inspection of the temperature field for both cases (not

shown in the text) showed the gradual depletion of the super-

heat. The initial sharp temperature gradient at the interface

was replaced with a less steep temperature gradient as a result

of heat diffusion. This did not have a pronounced effect at the

early period of growth. However, it decreased the growth rate

at the later time.

CONCLUSIONS

We have used direct numerical simulation to study phase

change phenomena. Numerical simulation of a three-dimensio-

nal boiling bubble in zero gravity showed the deformation of

the bubble to an egg-like shape as a result of nonuniform evap-

oration at the phase boundary. Similar computations for a

bubble under high gravity showed the formation of a "dim-

pied" bubble. For both cases, the growth rate started to halt as

a result of depletion of the superheat.
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